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Clebsch-Gordan-type linearisation relations for the products 
of Laguerre polynomials and hydrogen-like functions 
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Laboratory of Molecular Spectroscopy and Quantum Chemistry, V I Vernadsky Institute 
of Geochemistry and Analytical Chemistry, Academy of Sciences of the USSR, Moscow 
117334, USSR 

Received 5 August 1982, in final form 7 June 1984 

Abstract. Two series of Clebsch-Gordan type are derived for the most general product of 
the Laguerre polynomials, L ~ ; ( u , x ) L ~ ; ( u , x ) ,  which differ in orders, n, weights, a, and 
scaling multipliers, U. The general form and particular cases of coefficients in the expansion 
of the polynomial x k L z : ( u , x ) .  . . Lz:(uNx) in terms of the Laguerre polynomials are 
established. The applications to hydrogen-like functions and Morse oscillators are indi- 
cated. Connection with an earlier Carlitz expansion, the technical links with the hyper- 
spherical harmonics formalism and different approaches to the important Koomwinder’s 
positivity theorems are discussed briefly. 

1. Introduction 

The Laguerre and Jacobi polynomials, which virtually cover all the classical orthogonal 
polynomials, play an important role in various physical applications. In many cases, 
the solutions of the Schrodinger equation for simple systems are expressed directly in 
terms of such polynomials: for example, hydrogen-like functions via the Laguerre 
polynomials, rotator functions via the Jacobi polynomials, etc. Since the Hermite and 
Bessel polynomials are particular cases of the Laguerre polynomials, and the Legendre 
and Gegenbauer polynomials are particular cases of the Jacobi polynomials, the 
numbers of such examples may be easily extended. 

The Laguerre and Jacobi polynomials also play an important role in approximate 
variational solutions of complex many-electron systems, because basis functions in 
variational methods are frequently connected with these two classes of special functions. 

It is convenient (and, as a rule, such a procedure cannot be avoided in practice) 
to represent the product of polynomials, p,(x)p,( x) ,  arising in quantum mechanical 
applications, as a linear combination of some functions p ; ,  i.e. to use some linearisation 
theorem. If pk polynomials of the same type, as in the initial product, are used as the 
elements of such a linear combination, then the corresponding expansion is of Clebsch- 
Gordan type (it is just this structure which is peculiar to the Clebsch-Gordan series 
for spherical functions). Sometimes it is more suitable to use in linear combination 
some functions p i  which differ from p k  We call such an expansion the (modified) 
series of Clebsch-Gordan type. 

Another important class of relations for classical polynomials is constituted by 
addition theorems which either relate to an expansion off(x + y ) ,  as in elliptic functions, 
or to an expansion off(g(x, ,  . . . , x,)) where g(x, ,  . . . , x,) is an appropriate function 
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of some variables that are usually related to a distance function on a homogeneous 
space. There are a number of addition formulae for the Jacobi and Laguerre poly- 
nomials (Erdelyi 1953, Vilenkin 1965). Some new addition formulae for the Laguerre 
polynomials were given by Koornwinder ( 1977) and Durand ( 1977). 

As regards the linearisation theorems, they are rather numerous for the Jacobi 
polynomials (Vilenkin 1965) or, equivalently, for the Wigner D functions (Varshalovich 
et al 1975). However, in the case of the Laguerre polynomials the linearisation 
theorems, except for one general theorem of the modified type (Carlitz 1957)t, relate 
to special cases rather than to a general case. For example, for a product 
Lz;( u,x) Lz;( u 2 x )  the following particular cases of modified linearisation theorems 
have been considered: the case a ,  = a2,  n ,  = n2 has been studied by Bailey (1936) (see 
also equation 10.12 (42), Erdilyi 1953), and the case a ,  = az ,  U ,  = u2 by Howell (1937)$. 
The usual (non-modified) Clebsch-Gordan type expansions have not been, to the 
author's knowledge, considered so far in explicit form. 

The need for the Laguerre polynomials in more general linearisation theorems is 
implied by their importance in atomic and nuclear shell theories. One more reason is 
that the hydrogen-like functions have been intensively advanced in recent years as 
perspective basis functions for variational calculations of molecular electron wavefunc- 
tions. 

Some interesting mathematical problems arise in connection with the linearisation 
relations§. For example, in particular cases the coefficients C in Clebsch-Gordan type 
expansions satisfy some important inequalities. Very interesting results were found by 
Koornwinder (1978). He showed that for integral k, I 

Lk(  x) LL( x) = (-  1 )T,L::"-,( x) ( 1 )  

L",Ax)Lz((l - A ) x ) = c  ck(A)Lz+n-k(x) ( 2 )  

I 

where C, a 0, and 

k 

with Ck( A ) 3 0 when 0 d A S 1 and a a 0. These relations are useful for computational 
purposes. For example, if a = 0 then XkCk(A) = 1 (set x = 0 in equation ( 2 ) ) ,  so the 
computation with these coefficients will be very stable for many problems. The 
coefficients Ck(A) also have an interesting combinational meaning (Askey et a1 1978). 
Since Koornwinder (1978) did not give explicit expressions for C, and ck(h) and his 
original positivity proofs seem to be very cumbersome (especially for C,(A)), it would 
be interesting to see whether the positivity of C, and Ck(A) follow directly from explicit 
algebraic formulae. This problem is discussed briefly in § 611. 

t This theorem is a particular case of more general expansion given in 9: 7. This particular expansion has 
been intensively studied in nuclear physics in recent years (the references are given in 8 7). 
$ h e  expansion of the product @ ( U ,  c ;  x ) @ ( u ' ,  c ;  x), which is equivalent to Howell's expansion, is presented 
in equation 6.15 (29) by Erdklyi (1953) with some misprints, as well as Howell's expansion (1937). The 
correct forms of the expansions are given by Burchnall and Chaundy (1941) (relations (72) and (98) ,  
respectively). 
I The author is indebted to the referee for the comments which are used in the rest of this section. 
/ I  I t  is shown that simple positivity proofs for C, and Ck(A) based on explicit algebraic expressions are, 
actually, possible. However, we give in the following only sketches of the proofs rather than the proofs 
themselves in full detail. The reason is that a number of other interesting properties of Ck(A), including 
generating functions, addition and linearisation theorems, etc, are implied by our approach. The presentation 
of these results would therefore lead to a conspicuous deviation from the initial objectives of the present 
investigation. The corresponding results will be presented in a separate publication. 
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2. Expansion of x'Li(7x) in terms of the Laguerre polynomials 

Consider the expansion 

Since ~ ~ = ( - l ) ~ k ! L ; ~ ( x ) ,  expansion (3) may be considered as a special form of 
linearisation theorem for the Laguerre polynomials. Without a loss in generality, we 
may confine ourselves to the case (T = 1, 

because 

Introducing the notation for the scalar product 

(f; cp), = Iom dxx" exp(-x)f(x)cp(x) 

and taking into account the orthogonality relation for the Laguerre polynomials 

(Lz, = S(m,  n ) T ( a +  1 + n ) / n !  (7) 
we obtain 

C?,:(k, T ) =  n ! / T ( a +  1 + n )  dxx'+k exp(-x)L:(x)Li(Tx). (8) Ip 
Prior to using equation (8) for establishing the algebraic expression for C ( k ,  T )  

coefficients, we shall make two general remarks. 
The first observation concerns 'selection rules'. The scalar product of a classical 

polynomial (with 'its own' weight function) of degree n by any polynomial p N  of 
degree N is not zero only if n s N (see 0 10.3 in Erdilyi (1953)), i.e. for example: 

( L : , p N ) u  $ 0  if n d N. (9) 

~ ( k ,  7) = n ! / r (a  + 1 + n ) ( L : ,  x~LP,(Tx)) ,  (10) 

Presenting equation (8) in the form 

we obtain in the case of integer k a O  (the polynomiality condition for x k L i )  the 
evident selection rule 

(11 )  O s n s m + k .  

If T = 1 (the case frequently arising in applications), there is an alternative expression: 

C(k ,  T )  = n!/r(a + 1 + n(LP,, x ~ - ~ + ~ L : ) ~ .  (12) 

This means, by virtue of equation (9), that if a - p + k is non-negative integer (the 
polynomiality condition for the second multiplier in equation (12)), then there exists 
the supplementary selection rule and, then, in the case a - p + k < m, the number of 
terms in the sum (3) is determined not by condition ( 1  l) ,  but obeys a stronger inequality 

(13) m - a + P - k s n s m + k  
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In particular, if a - p + k = 0, then m n m + k. Thus, in the case of k and a - p 
integers, with fixed values of m, fl and k in the left-hand side of equation (3), by 
choosing a parameter a one may control the number of terms in the right-hand side 
of equation (3) .  Evidently, the least possible number of terms corresponds to the case 

The second remark concerns the orthogonality relation and the sum rule for C (  k, T). 
( ~ = p - k .  

Applying the scaling transformations, one may easily show that 

Substituting equation (14) into equation (4), we obtain 

and, hence, 

Note that in the case k = 1,2 , .  . . , the orthogonality relation links the coefficients 
C ( k ,  T )  in expansion (4) of polynomial type ( k >  0) with coefficients C ( - k ,  1 / ~ )  of 
the corresponding expansion of non-polynomial type. In the case k = O  both sets of 
coefficients in equation ( 1  5) pertain to polynomial expansions of the same type. 

Multiplying both sides of equation (3)  by the power x 4  and using, one the one 
hand, the expansion of type (3 )  for the expression arising on the left-hand side of the 
equation 

xk+‘Li(7x) =c  C k , r ( k + q ,  T, t)L:(tx) 
n 

and, on the other hand, the expansion of the same type for the expressions arising on 
the right-hand side of the equation 

we obtain, after obvious manipulations, 

The ‘sum rule’ (16) can also be interpreted as an argument multiplication theorem 
for the function C (  k, T), or alternatively, as an addition theorem for the index k. One 
may also easily show that the orthogonality relation (15) is a particular case of the 
addition theorem (16). 

3. Algebraic representation for coefficients C(k,  .r)-particular cases 

In order to obtain ‘explicit expressions’ for the coefficients C, we use the integral 
representation equation (8). Writing down the Laguerre polynomials in equation (8) 
in the form of a hypergeometric series, F i ,  we obtain the expression for C (  k, T) as an 
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Appell function, F,t: 

where ( a ) ,  is the Pochhammer symbol. 

the unit argument (see equation (16) in Niukkanen (1983)), we have 
Using the reduction formula for the corresponding Lauricella function, FA, with 

( a  + 1 )k( p + I), (- k), 
m ! ( a +  l ) ,  

+ 1 + k, k + 1, - m ; 7 
F:[  k +  1 - n, /3 + 1 

C?P,( k, T) = 

Expression (1 8) is fallacious in some cases. Indeed, for the value n 5 k + 1, allowed 
by selection rule ( l l ) ,  the quantity (-k), in equation (18) assumes zero value, and 
the series F: tends to infinity, since the parameter k + 1 - n in F: is a non-positive 
integer and, hence, the coefficients of r' in the sum F:, in the case i 5 n - k, contain 
zero denominators, ( k  + 1 - n) ; therefore, the condition i s m does not lead to termina- 
tion of the series before the 'dangerous denominators' appear. Consequently, in the 
case of n 2 k + 1 expression ( 18) is formal, and to make it sensible it is necessary to 
use some limiting transition or to apply some other calculation procedure that would 
not result in the appearance of 'dangerous denominators'. 

Since the hypergeometric series in equation (18) is a finite sum, it may be written 
in 'inverse order' by reordering it in descending rather than ascending powers of 
argument. Using for this purpose the general formula (35) from Niukkanen (1983), 
we obtain the expression for the coefficient C( k, T) in terms of the Appell function, F3: 

Applying the reduction formula (17) from Niukkanen (1983), to the corresponding 
Lauricella function FB, with the unit argument, we have 

1 - m , - m - p , - k - m i n ;  1 / r  
- m  - a  - k, - k - m  

x F:  

Obviously, expression (20) is correct for any n such that 0 s n s m + k. Really, in 
spite of negative integer denominators, the negative integer numerators assure the 
termination of the series before the diverging coefficients appear in the sum F:. In 
the case T = 1 the coefficient C( k, T) is expressed in terms of F:( 1) .  

In turn, any finite series F i ( 1 )  is equivalent to a Clebsch-Gordan coefficient 
(Smorodinsky and Shelepin 1972), which indicates an indirect link of the problem 
under consideration with the linearisation theorem for spherical functions. 

Let us consider some particular cases of expansion (4). In the case k = 0 we obtain 
the expansion of the Laguerre polynomial L!(Tx) over the Laguerre polynomials of 

t We use in equation (17)  and hereafter the notation accepted in Niukkanen (1983)).  @ indicates an empty 
set. 
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different weight with unit scaling multiplier 

L i (  T X )  = c ci,:(o, T)L:(X)  
n 

the corresponding function F i  in equation (20) being reduced to the function F: due  
to cancellation of numerator and denominator parameters, i.e. 

- m - p , - m + n ;  1 / r  
- m - a  

C?,Z(O, 7) =- (a + n + l ) m - n ( - m ) n T m F :  
m ! 

If, in addition, a = p or T = 1 ,  then further reduction of the series F: takes place: in 
the first case due  to additional cancellation of numerator and denominator parameters, 
and in the second case as a consequence of the Gauss theorem (Erdtlyi 1953, equation 
2.1 ( 1 4 ) ) .  As a result, we obtain, as particular cases of equation (21), two standard 
expansions (Erdtlyi 1953, equations 10.12 ( 4 0 , 3 9 ) ) :  

L p , ( T x ) = c  n CP,,p,(O, 7 ) L { ( x ) = C  ,, ( P + m ) i " ( l - T ) m - n L p ( x )  m - n  (23 )  

and 

Other cases of reduction of F: to F:  in equation ( 2 0 ) ,  which we shall not write down 
in explicit form, correspond to k = p, k = -a and k = /3 - a ,  which shows a particular 
simplicity of expansions with functions of x"Lz form on the left- and/or  right-hand 
side of an  expansion. The case m = 0 or p = - m  corresponds to the expansion of an  
exponential function over the Laguerre polynomials (in this case F:( 1 )  = 1 in equation 
(20)). In some particular cases the series F:( 1) can be written as a simple r product 
with the aid of the well known summation theorems (see Q 4.4 in Erdtlyi (1953)) .  The 
case p = -2m - 1 leads to expansion of the Bessel polynomial over the Laguerre 
polynomials. 

It is worth mentioning that there are alternative methods of obtaining equation 
( 2 0 )  directly?. First, one can combine the known formulae (23 )  and (24 )  to obtain an  
expansion with coefficients ,F,(z) where z = T ( T  - l ) - ' .  Applying the analytical con- 
tinuation formula 2 + 1 - 2 - l  (see equation 2.10(4),  Erdtlyi 1953), one can derive 
equation ( 2 2 )  independently of ( 2 0 ) .  Differentiating equation ( 2 2 )  k times with respect 
to T, we obtain, eventually, equation ( 2 0 ) .  Another approach is to use the explicit 
algebraic expressions for Laguerre polynomials in equation (8) to obtain C as a double 
sum. Expressing the resulting integrals in terms of the r functions and transforming 
the double sum to a one-fold one with the help of the Gauss summation theorem$ for 
* F , ( l )  one can prove equation (18) directly. Moreover, equation (18) can be trans- 
formed into equation (20) by ordering the sum F in descending rather than ascending 
powers of the argument T .  Therefore one can proceed without the use of the general 
formulae (Niukkanen 1983) in this relatively simple case. Nevertheless the use of the 
reduction formulae may serve as a paradigm for more complicated cases (see § 51, 
where it allows us to save much calculational effort. 

t The author is indebted to the referee for this indication. 
$ The use of the Gauss theorem is, actually, equivalent to what is partially implied by 'reduction rules'. 
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4. Coefficients C(k,  7): physical and formal applications 

Using the coefficients C ( k ,  T )  of the particular types (22), (23) and (24), one may 
easily obtain alternative forms of expansions of the general coefficients C ( k ,  T )  in 
equation (20), in terms of simpler functions. For this purpose the polynomial multipliers 
in the integrand of equation (8) should be grouped in such a way that it would be 
possible to use any two of the three particular expansions indicated in 0 3, as well as 
the orthonormality integral (7). Using, for example, in equation (8), the expansions 

LZ(X) =c  c;;,u+k(o, l)L:+k(x) 
r 

LE(TX)=C c ~ , ~ ' k ( o ,  T)L:'k(X) 
5 

we obtain, with the help of equation (7), 

By virtue of relations (24) and (22), equation (25) yields an expansion of F:( 1 / ~ )  in 
terms of the Gauss functions, F:( l / ~ ) .  In the case T = 1 equation (25) results in one 
of the Thomae relations between F:(l) series (Bailey 1935a) which can be used, in 
particular, for transition to a more symmetric (by n, a and rn, /3 parameters) form for 
F:( 1 )  series. Another representation of similar type arises when the functions xkL:(x) 
and L:(Tx) in equation (8) are expanded over the Laguerre polynomials, L:(x). 

The coefficients C ( k ,  T )  also allow a number of straightforward physical applica- 
tions. For example, when the Morse oscillator eigenfunctions (Wallace 1976, Ephremov 
1977) or the eigenfunctions of the Strum-Liouville equation for the Morse oscillator 
(Ephremov 1978) are used as a basis set in the variational theory of oscillations of 
polyatomic molecules, 'a great many matrix elements involving these eigenfunctions 
must be evaluated. That theory would not be practical if analytic expressions for the 
matrix elements could not be found' (Wallace 1976). The matrix elements in this quote 
have the following form in Wallace's (1976) notation: 

where f ( x )  = 1, x, xdldx.  Analytical expressions for integrals (26) were given by 
Wallace (1976), depending on the form of the operator 1; as a combination of some 
cumbersome sums. With the aid of coefficients C(  k, T )  one may obtain a much more 
compact expression for integrals (26) both in the case f = 1 ,  x, xdldx,  and for a wider 
class of' operators f = x'(d/dx)'. Indeed, using the differentiation formula for the 
Laguerre polynomials and taking into account equation (8), we obtain 

By virtue of equation (20) the integral I is expressed as a finite sum Fi(1). 

calculating matrix elements with hydrogen-like functions, H( r ) :  
The coefficients C ( k ,  T )  also arise in the theory of molecular electronic states when 
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where Ylm(r) is the spherical function. The case w = l / n  corresponds to a hydrogen 
atom, and w = Z / n  to a hydrogen-like atom with nuclear charge, 2. Introducing the 
reduced density 

pJi(r) = {Hulnl/l(r)@ Hw2n2/2(r)}lm $29) 

where the symbol { @ }  denotes the irreducible tensor product (Varshalovich et a1 1975), 
one may easily show, for example, that the probability of an electrical 2'-pole transition 
is associated with the integral 

d r  {9y(r)@p;2(r)}oo 

where @,,,(r) = rfY/m(r) is the regular solid harmonic. Taking into account that 
(Varshalovich et a1 1975) 

where ( a a b p  ( c y )  is the Clebsch-Gordan coefficient, we obtain 

T i 2 =  ( ~ T ) " ~ H ( / , ,  12 ,  l ) H ( l ,  1, 0 ) ( 2 w l ) ' i ( 2 w 2 ) ~ 2 Z f 2 / ( w 1 + w 2 ) ~ ~ + ~ ~ + ~ + 3  

exp( - r )  ~t;l+' ( x l  r )  L ~ > + I  (x2 r )  (31 )  I ; 2  = d r  , . / 1+ /2+ /+3  1: 
where 

12 = / I ,  - 11, 11, - 11 + 2, . . . , I ,  + 1, 
x , = l + v  x * = l - v  

v1 = n ,  - 1,  - 1 

v = ( w ,  - w2)  ( w ,  + q - 1  

v, = n, - I ,  - 1. 

Generally, the integral (31 )  is expressed in terms of the Appell function, F,, 

For nl, + nl, transitions a more simple expression via the C( k, T )  coefficient takes place: 

i.e. in accordance with equation (20), the probability of any multipole transitions, in 
which the principal quantum number does not change, is expressed in terms of the 
Clausen function, F:( 1 ) .  

Transforming a part of the polynomial multipliers in the integrand (31) with the 
help of equation (4), 

21*+ 1,2/1+1 (12+1-11+1, l )~; ' i+'(x,r)  r / 2 + / - / , + l  21 + I  
L Y ;  = c C">.fl 

n 

and taking into account the reduction formula (ErdClyi 1953, equation 5.10 (3 ) )  
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we obtain in the general case 

By virtue of the selection rule (13): 

v 2 + l 2 - l 1  - I -  1 s n s  v2+12+I l+  1 

the number of terms in the right-hand side of equation (32) is 21+3, i.e. increases 
proportionally to the transition orbital moment. The formulae obtained in this section 
provide a convenient generalisation of expressions for the probability of dipole elec- 
trical transitions (see earlier works on the hydrogen atom cited by Condon and Shortley 
(1935)) for the case of any multipole transitions. 

It is worth noting that expansion (4) also proves to be very useful in calculations 
of the Fourier transforms of atomic orbitals in the MO LCAO SCF method (Niukkanen 
1984a). 

5. Generalisation for the case of N variables 

The reduced density, equation (29), also enters, as a typical integrand structure, in 
more complicated four-centre integrals with hydrogen-like functions in variational 
calculations of molecular electronic structure. The calculation of these integrals is 
simplified if the irreducible product of the functions H, appearing in equation (29), 
is expressed as a linear combination of functions H. With due respect to equations 
(27) and (28) such a linearisation relation should have the form 

{H,ln,, l(r)OHw*n2/*(r)}fm = 1 Ql,lf2n:n(w1, ~ 2 ) ~ w ~ + w 2 , n l m ( r )  
n 

where coefficients Q ( w , ,  w 2 )  are related to the coefficients R ( w , ,  w 2 )  in the expansion 
+ , + f * - f  21 + I  R ixln ( w w 2 )  Lil?,'- 2( w , + w2) r ]  

by 

(33) L,  ,L I I  - (2w , r ) ti)?l:- , ( 20, r ) = 
n 

f I f f  ( 2 ~ 1 + 2 ~ 2 )  Q i l i 2 n ( w l ,  ~ 2 )  = (2w1)'1(2w2)'2~(119 12, I )Ri f2, :n(wl ,  ~ 2 ) .  

In turn, relation (33) is an obvious generalisation of expansion (3) for the case of two 
Laguerre polynomials in the left-hand side of the equation. Since general formulae 
have a similar structure for any number of the Laguerre polynomials, we consider the 
most general expansion of this type 

(34) t k L : ; ( x l t ) .  . . L;:(xNt)  =C c:; :$(k; x l r . .  . , x N ;  x ) t ; ( x t ) .  
n 

Obviously, the coefficients R in equation (33) are a particular case of the coefficients 
C: 

(35) 
21 +1,21 + I , Z f + l  

Rl,llfi2n(Ul, 02) = C n , l - / , - l ~ n ~ - f ~ - , , n - f - l ( l ,  + 1 2 -  I ;  2 ~ , , 2 ~ 2 ;  2Wl+2w2). 
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General properties of the coefficients C in equation (34) may be easily obtained by 
analogy with the reasoning given in 00 2 and 3. In particular, just as in the case of 
equations (4) and ( 5 ) ,  we have 

Cz; : , ; '$ (k ;  x , ,  . .  . , x,.,; x )  = x-kC:;;;::;;( k ;  >, X . . . ,") X 

where 

Transforming the integral representation 

d t r "+k  exp(-t)L:;(x,r). . . n !  - - 

to a form similar to equation (lo), and for the case x,  = 1 to a form similar to equation 
(12), we obtain the following selection rule: 

max[O, n, - n ,  -. . . - n 3 - ,  - ns+ l  -. . . -  nN - a  + a ,  - k ] s  n 

Using exactly the same reasoning as in § 3, we arrive at the following two expressions 
for coefficients C in terms of the functions '"F (Niukkanen 1983), which are similar 
to equations (18) and (20), respectivelyt 

k +  n, +. . .+  nN. 

3 a + k + l , k + l ; - n ,  , . . . ,  - n N ; x ,  ,..., x,., 
k -  n + 1 ;  a i +  1 , .  . . , a N  + 1 (37 )  

- 1  ,., I n - n ,  -. . . - n N  - k ;  - n , ,  - a ,  - n,, . . . , - n N ,  -aN - n N ;  x, , . . . , x,' 
-a - n ,  -. . . - n N  - k, - n ,  -. . . - n N  - k ;  Q.. . i ~  

(38) 

Generally, to calculate the coefficients C, recurrence relations and explicit expressions 
for the functions N F  given in Niukkanen (1983) may be used. In the special case of 
the coefficients C in equation (35), in which the quantities k, a, and a are interrelated 
by a linear relation, it is expedient to use such a recurrence equation that would not 
violate this relation, i.e. that would not involve in the recursion some coefficients other 
than R. For this purpose we use for coefficients R the integral representation of the 

t Expressing polynomials L in equation (36) as a Kummer function @ one can easily represent the coefficient 
C through the Lauricella function FA depending on N + I variables. In the case of k = 0 this is equivalent 
to an earlier (ErdClyi 1936a) result. The possibility of expressing coefficients C through functions "F::; 
and "Fi:: depending on lesser number of variables is an evident advantage of our approach. 

[ x F2:o 
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where 0; = w l ( w I  + w 2 ) - ' ,  w i  = w2(wI  + w 2 ) - ' .  
Then, taking into account the recurrence relation for L,(x) 

nL:( x) = ( n  + a ) ~ z - , ( x )  - a~:f : (x)  + x~zT:(x) 

which is a consequence of two standard relations for the Laguerre polynomials (Erdilyi 
1953, equations 10.12 (23) and (24)), we obtain the necessary recurrence equation 

v , q ; ; " ( w ; ,  w;)=(vI+211+ l ) I~ l ' ? l , " , " (w; ,  w;)-w',I>,';y2"(w;, w ; )  

+w;I: ;&(w; ,  U ; )  

as well as two similar relations for the indexes 1 2 ,  v2 and 1, v. Initial values for such 
a system of equations are either the Appell functions F2, if the recursion over only 
one of v l ,  v2, v indexes is used, or the Gauss functions, F:, if the recursion over two 
indexes is utilised. 

6. Expansion of the product L z ; ( u , x ) L ~ ~ u , x )  in terms of L ~ I + ~ ~ [ ( U ,  + u,)xI 

In  some special cases there is no need in using general formulae for the coefficients 
C. Let us consider, for example, an alternative formulation of the linearisation theorem 
for the particular case of practical interest 

N = 2, k = O ,  a = a ,  + a?, x = x , + x >  

in equation (34), that leads to an especially simple expression for the coefficients C 
and thus yields a non-trivial reduction rule for the functions N F  in equations (37) and 
(38). 

Using in the Rodriguez formula for the Laguerre polynomials the differential identity 

we obtain the following 'parametric' representation for Lz (x):  

1 
n .  

L:(x) = y e "  d"(h)A"+u e-h" 

where d(h)  = d/dh. Then 

L~ ; (u ,x )L~ ; (u ,x )  =- exp(-ux) d"l(Xl) d"l(h,) h?'+'lA;2*u2 
1 

n ,  ! n 2 !  

xexp[-(u{A, + u;A2)ux] 
A 1 = A 2 = 1  

where 
U = U1 + uz U ;  = U I / U  U; = U 2 1  U. 

(39) 
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Changing the variables A , ,  A 2  to new variables 

A = u { h l + u ; A 2  p = A I - A 2  

and taking into account that 

A I  = A + U$ A 2 z A - u ; ~  

d(Ai)=u;  d ( A ) + d ( p )  d(A2) = 4 d(A) - d b )  

we have 

G; ( U I X )  C;( u2x) 

1 
-- - ( - 1 ) * 2  exp(-ux)u;n2+a2u;nl+ai(d(p)+ U {  d(A))"l(d(p) - U; d(A))"2 

n , !  n 2 !  

x ( p + ~ ~ - ' A ) ' ' ~ + ~ ~ ( p  - u { - I A ) " ~ + ~ ~  exp(-Aux) (40) I*=I,Y=O. 
Applying equation (34) from Niukkanen (1983) for the case N = 2, taking into account 
that the Lauricella functions, F,,, arising in such an expansion are transformed into 
the Gauss functions, F:, and writing down the functions F: through the Jacobi 
polynomials P?3p'(x), we have 

(41) 

Using expansion (41) both for the product of operator binomials, and for the product 
of non-operator binomials in equation (40), taking into account that U {  + U; = 1, making 
appropriate differentiations, expressing the derivative with respect to A via relation 
(39) and taking into account that, by virtue of p = 0, the resulting double sum is 
reduced to a simple one, we can assert finally that the coefficients C in the expansion 

have the following simple form: 
c a1 .a2.e, +e2 

n l . n * , f l  (0; U,, u2) 

U ;-n2u; - " I  
n ! ( n ,  + n2 - n ) !  

n l ! n 2 !  
- - 

(43) 

provided that ul + u2 = 1 and aI + a2 = a. 
Note that the expansion (42) is a series of Clebsch-Gordan type with the constant 

weight a = a, + a2 of Laguerre polynomials in the right-hand side, whereas Bailey and 
Howell expansions, for example, are modified series of Clebsch-Gordan type (for 
particular values of parameters) with the weight indexes depending on the summation 
variable n (see 8 1). 

Using definitions (27) and (28), equation (41) can be easily reformulated for 
hydrogen-like functions or their radial parts. Using expansion (42) in equations (31) 
and (36) for N = 2, one may obtain alternative expansions over the Jacobi polynomials 
for both the transition probability integral If' and the coefficient C ( k ;  U,, U,; U )  of 

n - n 2 , n - n , l  LI + n - n 2 , a 2 + n - n l )  
x p',,+,,-, ( U 2  - w%,L-n ( u 2 -  U11 
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general type. In the cases n2 = 0 or a2 = -n2  expansion (42) is equivalent to particular 
types of expansions discussed in 0 3. If n l  = n2, or ai + n, = a,+ n2 or nl  = n2 and 
a l  = a2, then in the product of the Jacobi polynomials on the right-hand side of equation 
(43) the first multiplier or the second one, or both of them, respectively, turn out to 
be the Gegenbauer polynomials, C^, (ErdClyi 1953, equation 10.9 (4)). Since the 
quantity Ck(0)  has a form of r product (ErdClyi 1953, equation 10.9 (19)), this means 
that in the case n, = n2, a l  = a*, uI  = u2, the coefficient C in equation (43) has a simple 
form of Pochhammer symbols product. 

Equation (43) can be obtained with the help of another method which can also be 
used to prove one of Koornwinder’s positivity theorems (see Q 1) in a more appropriate 
and compact way. Using the integral representation (8) for C in equation (42), 
transforming LP;(x) with the help of the Rodriguez formula, integrating by parts n 
times, applying the Leibnitz rule for the product derivative and expressing the deriva- 
tives of the Laguerre polynomials with the help of the standard formula (ErdClyi 1953, 
equation 10.12 (15)), we have 

where [ili21n] denotes the set of conditions il  3 0, i2 5 0, i l  + i2 = n. Provided that 
u1 = u2 = 1 and a = a l  + a2 (see equation ( l ) ) ,  one can use the following known formula? 

which is another particular case of the coefficients C( k, T )  (see equations (8) and (20)). 
In the case of non-negative integral a l  and a2 this gives a representation of C in 
equation (44) as the product of of an explicitly positive expression and the factor 
(- , ) 9 + , 2 - ,  . In other words, this method not only gives us a positivity proof for Ci in 
equation ( 1 )  but also leads to an explicitly positive, i.e. containing only non-negative 
contributions, expression for Koornwinder’s coefficients. 

One can transform equation (44) to the form of equation (43) with the aid of the 
following argument. If use is made of the Rodriguez formula for both the L in equation 
(44), then putting u I  + u2 = 1 and a = a l  + a2 (see the note following equation (43)), 
one can verify that cancellation of both the exponential and the power factors takes 
place in the integrand of equation (44). This makes it easy to proceed with integration 
by parts which leads, eventually, to equation (43). Note that an equivalent approach 
is applicable to the product of Jacobi polynomials. This gives an alternative method 
of expanding the product P ~ ~ s p l ) ( x ) P ~ 2 . p 2 ) (  x)  in terms of P ~ I + ~ ~ ” I + ~ ~ ) (  x)  (cf Vilenkin 
1965). 

Equation (42) can also be applied to give a new simple proof of the second 
Koornwinder positivity theorem (see equation (2)).  Really, multiplying both sides of 
equation (42) by S;iS;2 we can carry out the summation over all integral n,, n2 with 
the help of the generating function for Laguerre polynomials (ErdClyi 1953, equation 
10.12 (17)). Writing down the resulting exponential function and the polynomial L:(x) 

t This formula is given by equation 7.414 (9) in Gradstein and Ryzhik (1971) with some misprints. The 
correct form is given by equation (45). 
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as ,F0 and IFI, respectively, and applying the operator I Fo[a + 1 ; z a / a ~ ] ~ = ,  (Niukkanen 
1983) to both sides of the equation, one can obtain a simple generating function for 
the coefficients C in equation (42). In the case a i  = a2 = a and U ,  + u2 = 1 (see equation 
(2)) such a function proves to be a product of the generating functionf,, corresponding 
to a = 0, and a simple function f ,  which can readily be represented by the Taylor series 
in S;lS;z with the positive coefficients C , .  Note that equation (43) gives an explicitly 
positive expression for the coefficients CO of the second Koornwinder expansion 
equation (2) for the important particular case a = 0. 

By definition the quantities CO represent the coefficients in the Taylor expansion 
of fo. Since the product of two Taylor series with positive coefficients is again a series 
with positive coefficients, this argument should give, apparently, a simple positivity 
proof for the coefficients of the second Koornwinder expansion equation (2)t .  

7. Modified series of Clebsch-Gordan type for the product of the Laguerre 
polynomials 

An alternative type of linearisation theorem for the Lz;( u ,x)L:; (u2x)  product arises 
when the integral representation of L: polynomials via the Bessel function, Ja, is used: 

which is obtained by a square substitution of the integration variable in the standard 
integral representation for Lz (Erdtlyi 1953, equation 10.12 (21)). We transform each 
of the two multipliers L by means of equation (46), denote the corresponding integration 
variablesby T ~ ,  72 and introduce polar coordinates 7, Q in the T ~ ,  T~ plane ( 7, = T cos Q, 

T~ = 7 sin 9). Introducing an arbitrary parameter, U, we use the Bailey (1935b) linearisa- 
tion theorem (see also equation 7.15 (7)  in Erdilyi (1953) and § 7 in Niukkanen (1983))t 

for the following values of parameters: 

W I  = (Ui/ COS Q w2= ( u ~ / u ) ” ~  sin Q z = 27( ux)l ’2 

The quantity y, for the time being, is arbitrary, and this gives us an opportunity to 
simplify the resulting expansion at a final stage. If the quantity p = a ,  + a,+ 1 - y 
assumes an integral value and if k 6 n,  + n 2 + p  then according to equation (46), the 
integral over variable 7 is expressed in terms of the Laguerre polynomial. As a result, 

t This reasoning resulted from the discussion which took place in course of communication with the referee. 
The details of the approach will be published in a separate paper. 
$ Hypergeometric series, *F, in equation (47) is just the Appell function, F4, in the notation of Niukkanen 
(1983). 
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we obtain 

(48) 
where 

U 
-k ,  y + k ;  ia,ia; - U1 cos2 cp, 

U 

0; a,+ 1, a2+ 1 (49) 

By term-by-term integration of the series on the right-hand side of equation (49), one 
can easily show that the function G is expressed as a hypergeometric series of higher 
rank 

1 T ( a ,  + n,  + 1)T(a2+ n2+ 1)  
2 r ( a I + a z + n l + n 2 + 2 )  

- _  - 

-k,  y + k ;  a 1  + n ,  + 1, a2+ n2 + 1 ; U,/ U, 
a,+ a,+ n , +  n 2 + 2 ;  a l + l ,  a,+ 1 

x * F::: [ 
Expansion (48) still has a formal character since, though the quantity p = a I  + a,+ 1 - y 
can be made an integer by choosing y, the inequality k S n ,  + n 2 +  p, under which the 
right-hand side of equation (48) has meaning, is an outside condition and does not 
follow so far from the properties of coefficients. As a result of the condition ul + u2 = U, 
not only does the exponential term in equation (48) vanish, but we also arrive at the 
desired selection rule, k s n, + n2+ p, for the function G. Indeed, if U = u1 + u2, then 
the arguments of the function 2F;Y on the right-hand side of equation (49) can be 
written as 

(u , /u)c0s2cp=x(1-y)  (u2/u)s in2cp=y( l -x)  

where x = cos2 Q, y = u2/u .  This makes it possible to use the expansion (Burchnall 
and Chaundy 1940, equation (54)): 

for the function ' F  in equation (49). Writing down the Gauss functions, F:, in the 
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form of Jacobi polynomials, we obtain: 

where 

On the right-hand side of equation (50 )  we have 0 G r S k and r S p if p = 0, 1,2,  . . . . 
Introducing the integration variable, t = cos 2 p ,  into equation (51), the function Z (  r )  
may be written, by analogy with equation ( I O ) ,  as a scalar product of the Jacobi 
polynomial (with the proper weight function) by some 'residual' expression, which 
turns out to be polynomial if p + n2 - r = 0, 1,2,  . . . . This condition will be satisfied 
for any values of n2, if r G p. Since the condition r S p is satisfied for integral p by 
virtue of the Pochhammer symbol ( - p ) ,  on the right-hand side of equation (50), we 
obtain, by analogy with the relation (9), the necessary selection rule k s n ,  + n 2 +  r 
according to which the value Z and, respectively, the function G are non-zero. The 
algebraic expression for the function Z ( r )  is given by the standard relation (Gradstein 
and Ryzhik 1971, equation 7.391 (2)) (we introduce the missing multiplier ( a  + l ) , , / n !  
into the right-hand side of this formula) 

5, d t (  1 - t ) " (  1 + t ) " P r 9 P ' (  t) 

3. = 2P+"+l r(p+l)r(o+l) ( a + l ) ,  -n ,  n + a + p + l , p + l ;  1 
r ( p + u + 2 )  -4 n !  a + l , p + u + 2  

Combining the obtained transformations and selection rules, we come to the 
following result. Let y be chosen so that the quantity p = a ,  + a,+ 1 - y assumes a 
nonnegative integer value. Then the following linearisation theorem takes place: 

where O ~ k ~ n , + n ~ + p  and 

3 - k + r , k + y + r , a 2 + n 2 + 1 ;  1 
y - a ,  + r ,  a , + a 2 + n , + n 2 + r + 2  

2 

(53) 

where 0 c r =s min( k, p ) .  
In the case y = a l  + a2 + 1 only a single term with r = 0 survives on the right-hand 

side of equation (53), and the linearisation theorem, equation ( 5 2 ) ,  assumes a simpler 
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form: 

1415 

( a I + a 2 + 2 k + l ) r ( ( ~ I + ~ 1 2 + k + l )  ‘E m y a , + k + i )  
r( a,+ n2+ l )T(a ,  + n ,  + 1)  

n , ! n , ! r ( a , + a 2 + n , + n 2 + 2 )  k = O  
- - 

- k , a 1 + a 2 + k + l , a 2 + n 2 + 1 ; 1  
a,+ 1 ,  a, + a,+ n ,  + n 2 + 2  

x ( n ,  + n 2 -  k ) !  F: 

X [ ( U I  + U2)X]kL::=nq2-c:+2k[(UI + u2)x-j (54) 

which is equivalent to an earlier (Carlitz 1957) result. This result was rediscovered 
later in nuclear physics with the help of the group theoretical approach?. By taking 
various normalisations into account, the coefficient F: appears as a Clebsch-Gordan 
coefficient of SU2, if a, and a2 are integers. Half-integral values of a, and a2 have 
been considered by Knyr et a1 (1976). Seven different formulae and recurrence relations 
have been given by Raynal (1976), all these formulae being equivalent and valid for 
arbitrary values of a, and a2. The case of arbitrary values of a, and a2 has also been 
considered more recently by Chacon et a1 (1979). It is worth noting that there are 8 
symbols F: with two negative integers, and 20 with one negative integer as a con- 
sequence of Whipple relations (Raynal 1978). Note also that such symbols as F: are 
closely connected with the well known ‘Regge symbols’. 

So equations ( 5 2 )  and (54) give a good way of comparing classical and group 
theoretical methods. It seems that the latter are more elegant and efficient in particular 
cases but the former have a wider field of application. Note that from the classical 
point of view the difference between the integral, half-integral and arbitrary values of 
a, and a2 seems to be artificial and, therefore, many difficulties can be avoided. On 
the other hand, we have a more general equation ( 5 2 )  that is more useful in applications 
since it allows us a possibility of shifting the weight index in the Laguerre polynomials. 
This expansion seems to be a ‘hard nut’ for the group theoretical methods. 

In some particular cases expansion (54) can be transformed to a simpler form. 
In the case n ,  = n, and a, = a2 the series F: ( 1 )  in equation (54) may be summed 

up with the help of the Watson theorem (ErdClyi 1953, equation 4.4 (6)). As a result, 
the coefficients in equation (54) assume a simple form of r products. If a, = a2 and 
U ,  = U,, then, as in the case considered in § 6, the Jacobi polynomial assumes a simple 
form of r product. Note that these two cases give analogues of the Bailey and Howell 
theorems (see § 1)  with the difference that the Laguerre polynomial on the right-hand 
sides of our expansions has the multiplier, x k ,  rather than x Z k .  It is worth noting also 
that in the case n2 = 0 the series F: ( 1 )  in equation (54) reduces to the function F: ( 1 )  
which is summed up by means of the Gauss theorem. In this case expansion (54) 
transforms into the ErdClyi (1936b) multiplication theorem (see also equation 6.14 ( 7 )  
in ErdClyi (1953)). 

8. Conclusions 

It is shown that the product x k L ; ; ( u I x ) .  . . L::(uNx) is expressed as a linear combina- 
tion of polynomials L : ( u x )  with coefficients C having a form of generalised hyper- 
geometric series, N F  (Niukkanen 1983). In some particular cases the coefficients C 

t Technically, this approach is closely related to hyperspherical harmonics formalism (see, for example, 
Raynal 1976). The author is indebted to Professor J Raynal for useful discusion of the group theoretical topics. 
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assume an especially simple form: for N = 1 they are expressed via the Clausen function, 
F: ( l / u i ) ,  and for k = 0 and N = 2 either as a product of two Jacobi polynomials (for 
the case of a series of Clebsch-Gordan type), or as a product of the Clausen function, 
F: ( I ) ,  by the Jacobi polynomial (in the case of a series of modified type). On the 
one hand, these special forms of linearisation theorems give reduction rules for the 
series N F  of a particular type and, besides, allow us to represent the corresponding 
series N F  of a more general type as expansions in terms of simpler functions. On the 
other hand, particular types of linearisation theorems are general enough for many 
physical applications. In particular, these linearisation relations can be easily reformu- 
lated for the hydrogen-like functions, which considerably facilitates the analytical 
formulation of the multicentre integral problem in variational calculations of molecular 
electron wavefunctions. 

Many types of expansions known from literature turn out to be particular cases of 
expansions presented in this paper that result in unifying numerous relations involving 
Laguerre polynomials. 
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